Short Synthesis of Diamide-Linked Sucrose Macrocycles

Mykhaylo A. Potopnyk, Piotr Cmoch, and Sławomir Jarosz*

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

slawomir.jarosz@icho.edu.pl

Received July 18, 2012

A convenient route to macrocyclic diamide-linked macrocyclic derivatives with a sucrose scaffold is presented. Reaction of sucrose based amines (*o*- and *m*-) with acid dichlorides afforded the monomeric macrocycles in excellent yields, while reaction of the *p*-amines also provided dimeric products.

Carbohydrates are convenient and easily accessible starting platforms for the preparation of chiral macrocyclic receptors.¹ Such macrocyclic derivatives based upon

10.1021/ol301993d © 2012 American Chemical Society Published on Web 08/02/2012

sugar scaffolds have been extensively used as chiral catalysts in asymmetric synthesis (asymmetric epoxidation of chalcones,² Michael addition,^{2c,e,3} and Darzens reactions^{2c,e,g,3c,4}). They have also been investigated as fluorescent molecular sensors for cations⁵ and anions.⁶

Recently we have demonstrated the synthesis of such receptors with a sucrose scaffold. The C-6 and C-6' positions in 1',2,3,3',4,4'-hexa-O-benzylsucrose (1)⁷ were connected *via* a bridge providing a range of macrocyclic derivatives (**2a**-c).⁸ Macrocyclic derivatives with higher symmetry (e.g., 3)⁹ are also available (Figure 1). Compounds of type **2** showed significant enantioselectivity in the complexation of an α -phenylethylammonium cation.^{8c}

^{(1) (}a) Jarosz, S.; Listkowski, A. *Curr. Org. Chem.* 2006, *10*, 643–662.
(b) Bughin, C.; Masson, G.; Zhu, J. *J. Org. Chem.* 2007, *72*, 1826–1829.
(c) Ruttens, B.; Blom, P.; Van Hoof, S.; Hubrecht, I.; Van der Eycken, J.; Sas, B.; Van Hemel, J.; Vandenkerckhove, J. *J. Org. Chem.* 2007, *72*, 5514–5522. (d) Fyvie, W. S.; Peczuh, M. W. *J. Org. Chem.* 2008, *73*, 3626–3629. (e) Leyden, R.; Velasco-Torrijos, T.; André, S.; Gouin, S.; Gabius, H.-J.; Murphy, P. V. *J. Org. Chem.* 2009, *74*, 9010–9026.
(f) Altamura, M.; Dragoni, E.; Infantino, A. S.; Legnani, L.; Ludbrook, S. B.; Menchi, G.; Toma, L.; Nativi, C. *Bioorg. Med. Chem. Lett.* 2009, *19*, 3841–3844. (g) Coppola, C.; Simeone, L.; Trotta, R.; De Napoli, L.; Randazzo, A.; Montesarchio, D. *Tetrahedron* 2010, *66*, 6769–6774.
(h) Allam, A.; Dupont, L.; Behr, J.-B.; Plantier-Royon, R. *Eur. J. Org. Chem.* 2012, 817–823. (i) Bako, P.; Keglevich, G.; Rapi, Z; Toke, L. *Curr. Org. Chem.* 2012, *16*, 297–304.

^{(2) (}a) Bakó, P.; Bakó, T.; Mészáros, A.; Keglevich, G.; Szöllősy, Á.; Bodor, S.; Makó, A.; Tőke, L. Synlett 2004, 643–646. (b) Bakó, T.; Bakó, P.; Keglevich, G.; Bombicz, P.; Kubinyi, M.; Pál, K.; Bodor, S.; Makó, A.; Tőke, L. Tetrahedron: Asymmetry 2004, 15, 1589–1595.
(c) Bakó, P.; Makó, A.; Keglevich, G.; Kubinyi, M.; Pál, K. Tetrahedron: Asymmetry 2005, 16, 1861–1871. (d) Pál, K.; Kállay, M.; Kubinyi, M.; Bakó, P.; Makó, A. Tetrahedron: Asymmetry 2007, 18, 1521–1528.
(e) Makó, A.; Szöllősy, Á.; Keglevich, G.; Menyhárd, D. K.; Bakó, P.; Tőke, L. Monatsh. Chem, 2008, 139, 525–535. (f) Makó, A.; Rapi, Z.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Hegedus, L.; Bakó, P. Tetrahedron: Asymmetry 2010, 21, 919–925. (g) Rapi, Z.; Szabó, T.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Bakó, P. Tetrahedron: Asymmetry 2011, 22, 1189–1196.

^{(3) (}a) Bakó, T.; Bakó, P.; Szöllősy, Á.; Czugler, M.; Keglevich, G.; Tőke, L. *Tetrahedron: Asymmetry* **2002**, *13*, 203–209. (b) Bakó, T.; Bakó, P.; Keglevich, G.; Báthori, N.; Czugler, M.; Tatai, J.; Novák, T.; Parlagh, G.; Tőke, L. *Tetrahedron: Asymmetry* **2003**, *14*, 1917–1923. (c) Bakó, P.; Rapi, Z.; Keglevich, G.; Szabó, T.; Sóti, P. L.; Vigh, T.; Grun, A.; Holczbauer, T. *Tetrahedron Lett.* **2011**, *52*, 1473–1476.

⁽⁴⁾ Rapi, Z.; Bakó, P.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Botyánszki, A.; Holczbauer, T. *Tetrahedron: Asymmetry* **2012**, *23*, 489–496.

^{(5) (}a) Xie, J.; Ménand, M.; Maisonneuve, S.; Métivier, R. J. Org. Chem. 2007, 72, 5980–5985. (b) Hsieh, Y.-C.; Chir, J.-L.; Wu, H.-H.; Chang, P.-S.; Wu, A.-T. Carbohydr. Res. 2009, 344, 2236–2239.
(c) Hsieh, Y.-C.; Chir, J.-L.; Wu, H.-H.; Guo, C.-Q.; Wu, A.-T. Tetrahedron Lett. 2010, 51, 109–111. (d) Hsieh, Y.-C.; Chir, J.-L.; Yang, S.-T.; Chen, S.-J.; Hu, C.-H.; Wu, A.-T. Carbohydr. Res. 2011, 346, 978–981.

⁽⁶⁾ Yang, S.-T.; Liao, D.-J.; Chen, S.-J.; Hu, C.-H.; Wu, A.-T. Analyst **2012**, 137, 1553–1555.

^{(7) (}a) Mach, M.; Jarosz, S.; Listkowski, A. J. Carbohydr. Chem. **2001**, 20, 485–493. (b) Jarosz, S.; Listkowski, A. J. Carbohydr. Chem. **2003**, 22, 753–763.

^{(8) (}a) Jarosz, S.; Listkowski, A.; Lewandowski, B.; Ciunik, Z.; Brzuszkiewicz, A. *Tetrahedron* **2005**, *61*, 8485–8492. (b) Jarosz, S.; Lewandowski, B. *Carbohydr. Res.* **2008**, *343*, 965–969. (c) Lewandowski, B.; Jarosz, S. *Chem. Commun.* **2008**, 6399–6401.

⁽⁹⁾ Lewandowski, B.; Jarosz, S. Org. Lett. 2010, 12, 2532-2535.

Figure 1. Macrocyclic receptors containing a sucrose scaffold.

In this paper we report on the synthesis of sucrosederived macrocyclic derivatives containing isophthalic and 2,6-pyridinedicarbonate amide groupings. Macrocyclic compounds with such aromatic platforms play an important role in supramolecular chemistry,¹⁰ as receptors for anions,¹¹ ion pairs,¹² zwitterions (e.g., dopamine^{12c}),

(12) (a) Kima, S. K.; Sessler, J. L. Chem. Soc. Rev. 2010, 39, 3784–3809. (b) Lankshear, M. D.; Dudley, I. M.; Chan, K.-M.; Cowley, A. R.; Santos, S. M.; Felix, V.; Beer, P. D. Chem.—Eur. J. 2008, 14, 2248–2263. (c) Santos, S. M.; Costa, P. J.; Lankshear, M. D.; Beer, P. D.; Félix, V. J. Phys. Chem. B 2010, 114, 11173–11180. (d) Picot, S. C.; Mullaney, B. R.; Beer, P. D. Chem.—Eur. J. 2012, 18, 6230–6237.

(13) Gasparrini, F.; Misiti, D.; Pierini, M.; Villani, C. Org. Lett. 2002, 4, 3993–3996.

(14) (a) Lankshear, M. D.; Evans, N. H.; Bayly, S. R.; Beer, P. D. *Chem.—Eur. J.* 2007, *13*, 3861–3870. (b) Evans, N. H.; Serpell, C. J.; Beer, P. D. Angew. Chem., Int. Ed. 2011, 50, 2507–2510. (c) Hancock, L. M.; Gilday, L. C.; Kilah, N. L.; Serpell, C. J.; Beer, P. D. Chem. *Commun.* 2011, *47*, 1725–1727. (d) Leontiev, A. V.; Serpell, C. J.; White, N. G.; Beer, P. D. Chem. Sci. 2011, *2*, 922–927. (e) Evans, N. H.; Serpell, C. J.; Beer, P. D. Chem.—Eur. J. 2011, *17*, 7734–7738. (f) Evans, N. H.; Rahman, H.; Leontiev, A. V.; Greenham, N. D.; Orlowski, G. A.; Zeng, Q.; Jacobs, R. M. J.; Serpell, C. J.; Kilah, N. L.; Davis, J. J.; Beer, P. D. *Chem. Sci.* 2012, *3*, 1080–1089.

(15) (a) Fioravanti, G.; Haraszkiewicz, N.; Kay, E. R.; Mendoza, S. M.; Bruno, C.; Marcaccio, M.; Wiering, P. G.; Paolucci, F.; Rudolf, P.; Brouwer, A. M.; Leigh, D. A. J. Am. Chem. Soc. 2008, 130, 2593–2601. (b) Kilah, N. L.; Wise, M. D.; Serpell, C. J.; Thompson, A. L.; White, N. G.; Christensen, K. E.; Beer, P. D. J. Am. Chem. Soc. 2010, 132, 11893–11895. (c) McConnell, A. J.; Serpell, C. J.; Thompson, A. L.; Allan, D. R.; Beer, P. D. Chem.—Eur. J. 2010, 16, 1256–1264. (d) Hancock, L. M.; Gilday, L. C.; Carvalho, S.; Costa, P. J.; Félix, V.; Serpell, C. J.; Kilah, N. L.; Beer, P. D. Chem.—Eur. J. 2010, 16, 13082–13094. (e) Leontiev, A. V.; Jemmett, C. A.; Beer, P. D. Chem.—Eur. J. 2011, 17, 816–825. (f) McConnell, A. J.; Beer, P. D. Chem.—Eur. J. 2011, 17, 2724–2733. (g) Evans, N. H.; Serpell, C. J.; White, N. G.; Beer, P. D. Org. Biomol. Chem. 2011, 9, 92–100. (i) Hancock, L. M.; Beer, P. D. Chem. 2011, 47, 6012–6014. (j) Evans, N. H.; Serpell, C. J.; Beer, P. D. Chem. 2011, 47, 8775–8777.

(16) (a) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.;
Cowley, A. R.; Szemes, F.; Drew, M. G. B. J. Am. Chem. Soc. 2005, 127, 2292–2302. (b) Serpell, C. J.; Kilah, N. L.; Costa, P. J.; Félix, V.; Beer, P. D. Angew. Chem., Int. Ed. 2010, 49, 5322–5326.

Scheme 1. Synthesis of Dimesylate 7

Scheme 2. Synthesis of Sucrose-Based Macrocyclic Diamides

and amino acid derivatives.¹³ The anion-complexing properties of these amides have been exploited in the templated syntheses of catenane,¹⁴ rotaxane,^{14a,15} and pseudorotaxane¹⁶ systems.

Macrocyclic diamides are usually synthesized from isophthalic and 2,6-pyridinedicarboxylic acids (or isophthaloyl and 2,6-pyridinedicarbonyl dichlorides) in combination with other building blocks, such as polyethylene glycol

⁽¹⁰⁾ Davis, F.; Higson, S. Macrocycles: construction, chemistry, and nanotechnology application; John Wiley & Sons, Ltd.: 2011.

^{(11) (}a) Bisson, A. P.; Lynch, V. M.; Monahan, M.-K. C.; Anslyn,
E. V. Angew. Chem., Int. Ed. Engl. 1997, 36, 2340–2342. (b) Niikura, K.;
Bisson, A. P.; Anslyn, E. V. J. Chem. Soc., Perkin Trans. 2 1999, 1111–1114. (c) Sansone, F.; Baldini, L.; Casnati, A.; Lazzarotto, M.; Ugozzoli,
F.; Ungaro, R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4842–4847.

Figure 2. Macrocyclic diamides 13a-e and 14a-e.

(PEG) reagents,^{14b,c,15b,d,f-h,j} chiral 1,2-diamines,¹³ calix-[4]arenes,^{11c,12b,14a,15c} and calix[4]diquinones.^{12d,14d,15i}

Our synthesis of sucrose-based macrocyclic derivatives of this type was initiated from 1',2,3,3',4,4'-hexa-O-methylsucrose (4). These protecting groups were selected because they are stable to a range of conditions (e.g., catalytic hydrogenation). Moreover, the NMR spectra of the complex macrocyclic products might be simpler than those of their per-O-benzyl analogs. Therefore we reasoned that application of hexa-O-methylsucrose (4) in the model synthesis of macrocyclic diamides would be preferable in comparison to 1',2,3,3',4,4'-hexa-O-benzylsucrose (1).

Synthon **4** was prepared for the first time by Sachinvala et al. in a rather long and tedious synthesis from free sucrose.¹⁷ We offer now an alternative and more convenient method for the preparation of **4** from either 6,6'-ditrityl¹⁸ or 6,6'-disilyl¹⁹ sucroses (**5** and **6** respectively).

Per-O-methylation of either **5** or **6** with methyl iodide followed by deprotection of the 6,6'-hydroxyl groups afforded the diol **4** in good overall yield (Scheme 1).

This diol **4** was converted into the mesylate **7** which was then applied as starting material for the preparation of the target macrocycles. Its condensation with 2 equiv of the proper nitro-phenol **8a**–**c** (o-, m-, p- respectively) provided the expected 6,6'-di-O-nitrophenyl-1',2,3,3',4,4'-hexa-Omethylsucroses **9a**–**c** in 85–90% yields.

Hydrogenation of these intermediates afforded the respective diamines 10a-c in excellent (91–96%) yield (Scheme 2). These diamines were used for the preparation of the macrocyclic bis-amides under high dilution conditions.

Condensation of *o*-diamine **10a** with isophthaloyl or 2,6pyridinedicarbonyl dichlorides (**11** and **12** respectively) afforded the expected macrocyclic derivatives **13a** or **14a** in 77% and 78% yields (Figure 2). These excellent yields of cyclization can be explained by assuming that there is good preorganization of the molecule substrate.

Reaction of the *m*-diamine **10b** with reagent **11** or **12** proceeded analogously, although the corresponding diamides **13b** and **14b** were formed in lower yields (57% and 62% respectively).

Condensation of the *p*-diamine **10c** with acid dichloride **11** or **12** under the same conditions was, however, more complex. The expected monomeric product **13c** was formed in low yield (18%) in the reaction with **11**, and the main one consisted of a mixture of two isomeric dimers

⁽¹⁷⁾ Sachinvala, N. D.; Niemczura, W. P.; Litt, M. H. Carbohydr. Res. 1991, 218, 237–245.

^{(18) (}a) Lewandowski, B.; Listkowski, A.; Petrova, K.; Jarosz, S. Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 1; Kováč, Pavol, Ed.; Taylor & Francis Group: Boca Raton-London-New York, 2012; 413-430. (b) Mach, M.; Jarosz, S.; Listkowski, A. J. Carbohydr. Chem. 2001, 20, 485-493. (c) Otake, T. Bull. Chem. Soc. Jpn. 1972, 45, 2895-2898.

^{(19) (}a) Murakami, N.Tamura, S.; Iwata, E.; Aoki, S.; Akiyama, S.; Kobayashi, M. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3267–3270.
(b) Andrade, M. M.; Barros, M. T. *Tetrahedron* **2004**, *60*, 9235–9243. (c) Gouy, M.-H.; Danel, M.; Gayral, M.; Bouchu, A.; Queneau, Y. Carbohydr. Res. **2007**, *342*, 2303–2308. (d) Barros, M. T.; Petrova, K. T.; Correia-da-Silva, P.; Potewar, T. M. Green Chem. **2011**, *13*, 1897–1906.

with C2-symmetry (13d/13e) obtained in 62% overall yield. Reaction of 10c with dichloride 12 proceeded analogously affording the monomeric product 14c (23%) and a 1:1 mixture of the dimeric products 14d/14e (54%; Figure 2).

Although these dimers could not be isolated in pure form, the proportions of **13d:13e** and **14d:14e** were estimated as 1:1 based on integration of aromatic signals in the ¹H NMR spectrum.

The relative orientations of the amino groups in the energetically accessible conformations of substrates 10a-c define the direction of macrolactamization. For compound **10c**, conformations of the monoamide where the second amine is close to the remaining acid chloride must have low populations, reducing the probability of formation of dilactams **13c** and **14c**; thus, 2:2-cyclization becomes dominant.

In conclusion, the work presented herein describes the synthesis of macrocyclic diamides 13-14 containing the sucrose subunit. The starting material for the macrocyclization is prepared in a relatively small number of steps, making this an efficient synthesis of such macrocycles.

The presence of sucrose and isophthalic or 2,6-pyridinedicarbonate amide in these scaffolds makes them promising receptors.

It is worth pointing out that the sucrose p-diamine (10c) upon reaction with an acid dichloride (11 or 12) afforded only small amounts of the desired monomer; the main products were dimers (with C2-symmetry) which could be distinguished by NMR.

Acknowledgment. The support from Grant POIG.01. 01.02-14-102/09 (partly financed by the European Union within the European Regional Development Fund) is acknowledged. This paper is dedicated to Professor Marek Chmielewski on the occasion of his 70th birthday.

Supporting Information Available. Experimental procedures and full spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.